Tag: Machine Learning
-
ML Prediction of High/Low Video Game Hits with Data Resampling and Model Tuning

The post outlines a ML-based approach to forecast video game sales, using several techniques to enhance training, accuracy, and prediction. The Kaggle’s VGChartz dataset, containing sales data and other game-specific information, was used to build and refine the model. Several ML techniques including RandomForestClassifier and Logistic Regression yielded top predictors, with the critic’s score deemed…
-
Customer Reviews NLP Spacy Analysis and ML/AI Demand Forecasting of the Steam PC Video Game Service

Steam, a leading digital distribution platform for PC gaming, has seen over 6000 new games released in 2022, averaging over 34 games each day. This post aims to conduct comprehensive customer reviews NLP sentiment analysis and ML/AI demand forecasting using public-domain datasets. It covers EDA, NLP Spacy analysis, ML/AI pipeline, model validation, word clouds, and…
-
Improved Multiple-Model ML/DL Credit Card Fraud Detection: F1=88% & ROC=91%

In 2023, the global card industry is projected to suffer $36.13 billion in fraud losses. This has necessitated a priority focus on enhancing credit card fraud detection by banks and financial organizations. AI-based techniques are making fraud detection easier and more accurate, with models able to recognize unusual transactions and fraud. The post discusses a…
-
Early Heart Attack Prediction using ECG Autoencoder and 19 ML/AI Models with Test Performance QC Comparisons

Table of Contents Embed Socials: ECG Autoencoder Let’s set the working directory YOURPATH import osos.chdir(‘YOURPATH’)os. getcwd() and import the following libraries import tensorflow as tfimport matplotlib.pyplot as pltimport numpy as npimport pandas as pd from tensorflow.keras import layers, lossesfrom sklearn.model_selection import train_test_splitfrom tensorflow.keras.models import Model Let’s read the input dataset df = pd.read_csv(‘ecg.csv’, header=None) Let’s…
-
Risk-Aware Strategies for DCA Investors

Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.
-
Effective 2D Image Compression with K-means Clustering

The post explores the application of the K-means clustering algorithm, a popular unsupervised Machine Learning algorithm, for image compression. By segmenting 2D images into different clusters, the algorithm effectively reduces storage space without compromising on image quality or resolution. It also demonstrates the application of this approach through a case study, where optimal results were…
-
Dealing with Imbalanced Data in HealthTech ML/AI – 1. Stroke Prediction

This post discusses the prediction of stroke using machine learning (ML) models, focusing on the use of early warning systems and data balancing techniques to manage the highly imbalanced stroke data. It includes a detailed exploration of the torch artificial neural network training and performance evaluation, as well as the implementation and evaluation of various…
-
Working with FRED API in Python: U.S. Recession Forecast & Beyond

The FRED API, or Federal Reserve Economic Data, provides over 267,000 economic time series from 80 sources, offering a wealth of data to promote economic education and research. It encompasses U.S. economic and financial data, including interest rates, monetary indicators, exchange rates, and regional economic data. Additionally, we analyzed correlations, trained currency exchange prediction models,…
-
Dabl Auto EDA-ML

Dabl, short for Data Analysis Baseline Library, is a high-level data exploration library in Python that automates repetitive data wrangling tasks in the early stages of supervised machine learning model development. Developed by Andreas Mueller and the scikit-learn community, it facilitates data preprocessing, advanced integrated visualization, exploratory data analysis (EDA), and ML model development, demonstrated…
-
Overview of AWS Tech Portfolio 2023

This summary focuses on the extensive capabilities of Amazon Web Services (AWS) by 2023, highlighting its 27% year-on-year growth and a net sales increase to $127.1 billion. AWS emerges as the top cloud service provider, offering over 200 services including compute, storage, databases, networking, AI, and machine learning. It is constantly expanding operations, having opened…
-
Gold Price Linear Regression

This content focuses on predicting gold prices using machine learning algorithms in Python. With an 80% R2-score and a Sharpe ratio of 2.33, it suggests a potential 8% revenue from an investment starting in December 2022. The forecasted next-day price for SPDR Gold Trust Shares is $185.136, aligning with Barchart’s “100% BUY” signal.
-
90% ACC Diabetes-2 ML Binary Classifier

A study aims to develop an ML-driven e-diagnosis system for detecting and classifying Type 2 Diabetes as an IoMT application. By leveraging advanced supervised ML algorithms, the system can predict a person’s diabetes risk based on several factors, provide a preliminary diagnosis, and relay doctor’s guidance on diet, exercise, and blood glucose testing. The Pima…
-
About Face Recognition ML Algorithms

Facial Recognition (FR) involves mapping an individual’s facial features mathematically and storing the data as a faceprint. This case study outlines the process of Exploratory Data Analysis (EDA) and performance QC analysis for ML/AI workflows using public-domain datasets and real-time webcam GUI. The study includes the use of SVM for FR, dataset splitting, ML model…
-
A Comparison of Binary Classifiers for Enhanced ML/AI Breast Cancer Diagnostics – 1. Scikit-Plot

The post compares binary classifiers in Scikit-Learn using the breast cancer dataset. It includes data analysis, ML preparation, learning curves, feature dominance, calibration curves, confusion matrix, ROC curve, precision-recall curve, KS statistic, cumulative gains, lift curves, PCA, and classification reports. Various models’ performances are compared with focus on key metrics and feature evaluations.
-
DL-Assisted ECG/EKG Anomaly Detection using LSTM Autoencoder

This project implements an ECG anomaly detection framework using an LSTM Autoencoder to accurately identify abnormal ECG events. It trains the autoencoder on normal rhythms, using reconstruction errors to identify anomalies. The proposed method aims to improve abnormal ECG detection, as demonstrated by test results on the ECG5000 dataset, providing valuable information for patient health…
-
DOGE-INR Price Prediction Backtesting

Featured Photo by Rūdolfs Klintsons Let’s look at the Dogecoin: Dogecoin is trading at 0.0666 as of the 13th of March 2023, a 0.91% increase since the beginning of the trading day. Dogecoin has 54 percent odds of going through some form of financial distress in the next two years and has generated negative returns to investors over the last 90…
-
Technology Focus Weekly Update 16 Oct ’22

Get top data-driven technology highlights of the week: new SaaS products, tech business applications and learnings of the week: DevOps, DevSecOps, Cybersecurity, public cloud platforms (AWS/GCP/Azure), MarTech, ML/AI, MLOPs, NLP, edtech, e-courses, upcoming events, and related Infographics. Contents: DevOps November 8th, 2022 | 11 a.m. ET Providing reliable and secure services doesn’t just happen. Traditionally,…


