Tag: stock
-
A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

This study presents a comprehensive stock technical analysis guide for Tesla (TSLA) using the TA-Lib Python library. It explores the use of over 200 technical indicators, analyses historical data, and offers insight for both swing traders and long-term holders. The content includes detailed explanations and plots for various momentum, volume, volatility, and trend indicators, providing…
-
Real-Time Stock Sentiment Analysis w/ NLP Web Scraping

Stock sentiment analysis is gaining popularity as a technique to understand public opinions on specific assets. This study uses NLP web scraping in Python to extract stock sentiments from financial news headlines on FinViz. The sentiment analysis can help determine investor opinions and potential impacts on stock prices, though it is not a standalone predictor.
-
Plotly Dash TA Stock Market App

The post explains how to deploy a Plotly Dash stock market app in Python with the dashboard of user-defined stock prices. This includes technical indicators like volume, MACD, and stochastic. The steps include selecting a stock ticker symbol (NVDA), retrieving stock data from yfinance API, adding Moving Averages, saving the stock chart in HTML form,…
-
NVIDIA Rolling Volatility: GARCH & XGBoost

This post examines the prediction of NVIDIA stock volatility using two models: the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and the Extreme Gradient Boosting (XGBoost). Both models are compared in terms of MSE and MAPE. The post discovers that the machine learning-based XGBoost model outperforms the GARCH model in NVDA volatility forecasting, showing the effectiveness of…
-
Datapane Stock Screener App from Scratch

This content provides a quick guide for value investors to use the Datapane stock screener API in Python. It includes instructions for installation, importing standard libraries, setting the stock ticker, downloading stock Adj Close price, and creating visualizations. The post also describes how to build a powerful report using Datapane’s layout components.
-
Risk-Aware Strategies for DCA Investors

Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.
-
Data Visualization in Python – 1. Stock Technical Indicators

Featured Photo by Monstera on Pexels. In this project, we will implement the following Technical Indicators in Python: Conventionally, we will look at the following three main groups of technical indicators: Input Stock Data Let’s set the working directory VIZ import osos.chdir(‘VIZ’)os. getcwd() and import the key libraries import datetime as dtimport pandas as pdimport…
-
Deep Reinforcement Learning (DRL) on $MO 8.07% DIV USA Stock Data 2022-23

This study applies the Deep Reinforcement Learning (DRL) algorithm to USA stocks with +4% DIV in 2022-23, focusing on Altria Group, Inc. The study addresses accurate stock price predictions and the challenges in traditional methods. Recent advances in DRL have shown improved accuracy in stock forecasting, making it suitable for turbulent markets and investment decision-making.
-
Applying a Risk-Aware Portfolio Rebalancing Strategy to ETF, Energy, Pharma, and Aerospace/Defense Stocks in 2023

The post discusses applying Guillen’s algorithm for risk-aware portfolio rebalancing, using Python. It incorporates five different stocks with specific weight allocations within an initial portfolio of $1,000,000. The post demonstrates setting the parameters for portfolio, importing required libraries, downloading input data, setting algorithmic rules for rebalancing, calculation of shares and portfolio values, and plotting visualizations.…
-
LSTM Price Predictions of 4 Tech Stocks

The given content explains the process of using Exploratory Data Analysis (EDA) and Long Short-Term Memory (LSTM) Sequential model for comparing the risk/return of four major tech stocks: Apple, Google, Microsoft, and Amazon, considering the tech scenario in 2023. The analysis involves examining stock price patterns, their correlations, risk-return assessment, and predicting stock prices using…
-
Towards Max(ROI/Risk) Trading

This post compares 1-year ROI/Risk of selected stocks vs ETF using stock analyzer functions. It includes comparing prices, visualizing annual risk and return, and examining correlation matrix of stock returns. It provides insights for selecting CPB stock for trading based on low correlation with ^GSPC, high return (~20%), and low risk (~23%).
-
Predicting Trend Reversal in Algorithmic Trading using Stochastic Oscillator in Python

This is the example stochastic oscillator in Python for algorithmic trading $NVIDIA candlestick chart vs a stochastic oscillator chart over our trading period.
-
Keras LSTM Stock Prediction
Despite the vast amount of historical stock data, the high noise to signal ratio and varied market conditions cause inadequate stock price predictions. A solution to these challenges is Long Short Term Memory (LSTM). LSTMs offer a range of adjustable parameters without the necessity for fine-tuning, and efficiently handle sequential data.


