Tag: Technical Trading Indicators

  • A Market-Neutral Strategy

    A Market-Neutral Strategy

    The work aims to solve the problem of Markowitz portfolio optimization for a one-year investment horizon through the pairs trading cointegrated strategy. Market-neutral trading strategies seek to generate returns independent of market swings to achieve a zero beta against its relevant market index. Statistical arbitrage (SA), pairs trading, and APO signals are analyzed. The study…

  • A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

    A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

    This study presents a comprehensive stock technical analysis guide for Tesla (TSLA) using the TA-Lib Python library. It explores the use of over 200 technical indicators, analyses historical data, and offers insight for both swing traders and long-term holders. The content includes detailed explanations and plots for various momentum, volume, volatility, and trend indicators, providing…

  • Plotly Dash TA Stock Market App

    Plotly Dash TA Stock Market App

    The post explains how to deploy a Plotly Dash stock market app in Python with the dashboard of user-defined stock prices. This includes technical indicators like volume, MACD, and stochastic. The steps include selecting a stock ticker symbol (NVDA), retrieving stock data from yfinance API, adding Moving Averages, saving the stock chart in HTML form,…

  • Dividend-NG-BTC Diversify Big Tech

    Dividend-NG-BTC Diversify Big Tech

    SEO Title: Can Dividends, Natural Gas and Crypto Diversify Big Techs? Ultimately, we need to answer the following fundamental question: Can Dividend Kings, NGUSD and BTC-USD Diversify Growth Tech assets? Dividends are very popular among investors, especially those who want a steady stream of income from their investments. Some companies choose to share their profits…

  • NVIDIA Returns-Drawdowns MVA & RNN Mean Reversal Trading

    NVIDIA Returns-Drawdowns MVA & RNN Mean Reversal Trading

    The study presents a machine learning-focused analytical approach to optimize NVIDIA’s stock performance using moving average crossovers and aims at comparing the outcomes with simple RNN mean reversal trading strategies. The steps taken involve preparing the stock data, calculating moving averages and drawdowns, plotting heatmaps of returns and drawdowns, and predicting returns and cumulative returns…

  • Multiple-Criteria Technical Analysis of Blue Chips in Python

    Multiple-Criteria Technical Analysis of Blue Chips in Python

    Blue chip stocks are the stocks of well-known, high-quality companies. We demonstrate that the proposed approach can help optimize the blue-chip portfolios comprehensively.

  • Datapane Stock Screener App from Scratch

    Datapane Stock Screener App from Scratch

    This content provides a quick guide for value investors to use the Datapane stock screener API in Python. It includes instructions for installation, importing standard libraries, setting the stock ticker, downloading stock Adj Close price, and creating visualizations. The post also describes how to build a powerful report using Datapane’s layout components.

  • Risk-Aware Strategies for DCA Investors

    Risk-Aware Strategies for DCA Investors

    Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.

  • Data Visualization in Python – 1. Stock Technical Indicators

    Data Visualization in Python – 1. Stock Technical Indicators

    Featured Photo by Monstera on Pexels. In this project, we will implement the following Technical Indicators in Python: Conventionally, we will look at the following three main groups of technical indicators: Input Stock Data Let’s set the working directory VIZ import osos.chdir(‘VIZ’)os. getcwd() and import the key libraries import datetime as dtimport pandas as pdimport…

  • JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    The post discusses predicting JPM stock prices for 2022-2023 using several predictive models like ARIMA, FFT, LSTM, and Technical Trading Indicators (TTIs) such as EMA, RSI, OBV, and MCAD. The ARIMA model used historical data, while the partial spectral decompositions of stock prices served as features for the FFT model. TTIs were calculated to validate…