Tag: Technical Trading Indicators
-
A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

This study presents a comprehensive stock technical analysis guide for Tesla (TSLA) using the TA-Lib Python library. It explores the use of over 200 technical indicators, analyses historical data, and offers insight for both swing traders and long-term holders. The content includes detailed explanations and plots for various momentum, volume, volatility, and trend indicators, providing…
-
Plotly Dash TA Stock Market App

The post explains how to deploy a Plotly Dash stock market app in Python with the dashboard of user-defined stock prices. This includes technical indicators like volume, MACD, and stochastic. The steps include selecting a stock ticker symbol (NVDA), retrieving stock data from yfinance API, adding Moving Averages, saving the stock chart in HTML form,…
-
NVIDIA Returns-Drawdowns MVA & RNN Mean Reversal Trading

The study presents a machine learning-focused analytical approach to optimize NVIDIA’s stock performance using moving average crossovers and aims at comparing the outcomes with simple RNN mean reversal trading strategies. The steps taken involve preparing the stock data, calculating moving averages and drawdowns, plotting heatmaps of returns and drawdowns, and predicting returns and cumulative returns…
-
Datapane Stock Screener App from Scratch

This content provides a quick guide for value investors to use the Datapane stock screener API in Python. It includes instructions for installation, importing standard libraries, setting the stock ticker, downloading stock Adj Close price, and creating visualizations. The post also describes how to build a powerful report using Datapane’s layout components.
-
Risk-Aware Strategies for DCA Investors

Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.
-
Data Visualization in Python – 1. Stock Technical Indicators

Featured Photo by Monstera on Pexels. In this project, we will implement the following Technical Indicators in Python: Conventionally, we will look at the following three main groups of technical indicators: Input Stock Data Let’s set the working directory VIZ import osos.chdir(‘VIZ’)os. getcwd() and import the key libraries import datetime as dtimport pandas as pdimport…
-
JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

The post discusses predicting JPM stock prices for 2022-2023 using several predictive models like ARIMA, FFT, LSTM, and Technical Trading Indicators (TTIs) such as EMA, RSI, OBV, and MCAD. The ARIMA model used historical data, while the partial spectral decompositions of stock prices served as features for the FFT model. TTIs were calculated to validate…


