Tag: business

  • Walmart Weekly Sales Time Series Forecasting using SARIMAX & ML Models

    Walmart Weekly Sales Time Series Forecasting using SARIMAX & ML Models

    The blog post delves into Time Series Forecasting (TSF), using SARIMAX and Supervised Machine Learning algorithms to predict Walmart’s weekly store sales. Factors affecting sales are investigated for strategies to increase revenues. The study additionally covers data preparation, feature correlation analysis, SARIMAX diagnostics, and the training of supervised ML models like Linear Regression, Random Forest,…

  • Retail Sales, Store Item Demand Time-Series Analysis/Forecasting: AutoEDA, FB Prophet, SARIMAX & Model Tuning

    Retail Sales, Store Item Demand Time-Series Analysis/Forecasting: AutoEDA, FB Prophet, SARIMAX & Model Tuning

    This study compares and evaluates various forecasting models to predict sales and demand for retail businesses. The focus is on Time Series Analysis (TSA) methods such as FB Prophet and SARIMAX. The final FB Prophet model yields MAE=4.252 and MAPE=0.168, while SARIMAX models’ best performing variant achieves MAE=6.285 and MAPE=0.213. The study emphasizes the importance…

  • Leveraging Predictive Uncertainties of Time Series Forecasting Models

    Leveraging Predictive Uncertainties of Time Series Forecasting Models

    Featured Image via Canva. Table of Contents Introduction Random Simulation Tests TSLA Stock 43 Days TSLA Stock 300 Days Housing in the United States Industrial Production Federal Funds Rate Data S&P 500 Absolute Returns Number of Airline Passengers- 1. Holt-Winters Number of Airline Passengers- 2. Prophet Average Temperature in India Monthly Sales Data Analysis QC…

  • A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

    A Comprehensive Analysis of Best Trading Technical Indicators w/ TA-Lib – Tesla ’23

    This study presents a comprehensive stock technical analysis guide for Tesla (TSLA) using the TA-Lib Python library. It explores the use of over 200 technical indicators, analyses historical data, and offers insight for both swing traders and long-term holders. The content includes detailed explanations and plots for various momentum, volume, volatility, and trend indicators, providing…

  • Sales Forecasting: tslearn, Random Walk, Holt-Winters, SARIMAX, GARCH, Prophet, and LSTM

    Sales Forecasting: tslearn, Random Walk, Holt-Winters, SARIMAX, GARCH, Prophet, and LSTM

    The data science project involves evaluating various sales forecasting algorithms in Python using a Kaggle time-series dataset. The forecasting algorithms include tslearn, Random Walk, Holt-Winters, SARIMA, GARCH, Prophet, LSTM and Di Pietro’s Model. The goal is to predict next month’s sales for a list of shops and products, which slightly changes every month. The best…

  • A Balanced Mix-and-Match Time Series Forecasting: ThymeBoost, Prophet, and AutoARIMA

    A Balanced Mix-and-Match Time Series Forecasting: ThymeBoost, Prophet, and AutoARIMA

    The post evaluates the performance of popular Time Series Forecasting (TSF) methods, namely AutoARIMA, Facebook Prophet, and ThymeBoost on four real-world time series datasets: Air Passengers, U.S. Wholesale Price Index (WPI), BTC-USD price, and Peyton Manning. Each TSF model uses historical data to identify trends and make future predictions. Studies indicate that ThymeBoost, which combines…

  • Plotly Dash TA Stock Market App

    Plotly Dash TA Stock Market App

    The post explains how to deploy a Plotly Dash stock market app in Python with the dashboard of user-defined stock prices. This includes technical indicators like volume, MACD, and stochastic. The steps include selecting a stock ticker symbol (NVDA), retrieving stock data from yfinance API, adding Moving Averages, saving the stock chart in HTML form,…

  • Dividend-NG-BTC Diversify Big Tech

    Dividend-NG-BTC Diversify Big Tech

    SEO Title: Can Dividends, Natural Gas and Crypto Diversify Big Techs? Ultimately, we need to answer the following fundamental question: Can Dividend Kings, NGUSD and BTC-USD Diversify Growth Tech assets? Dividends are very popular among investors, especially those who want a steady stream of income from their investments. Some companies choose to share their profits…

  • Real-Time Anomaly Detection of NAB Ambient Temperature Readings using the TensorFlow/Keras Autoencoder

    Real-Time Anomaly Detection of NAB Ambient Temperature Readings using the TensorFlow/Keras Autoencoder

    The content covers a detailed guide on implementing anomaly detection in time series data using autoencoders. The tutorial utilizes Python and real-world temperature dataset from Numenta Anomaly Benchmark (NAB). Following the Python workflow, the algorithm imports required libraries, performs anomaly detection, and visualizes anomalies. A trained autoencoder model identifies anomalies, with Precision, Recall, and F1…

  • Oracle Monte Carlo Stock Simulations

    Oracle Monte Carlo Stock Simulations

    Oracle Corporation’s significant developments in Generative AI have led to lucrative partnerships with Nvidia and Elon Musk’s xAI. Having secured contracts exceeding $4 billion for its Generation 2 Cloud designed for AI model training, Oracle’s earnings doubled in Q4 2023. Monte Carlo simulations align with Zacks Rank 3-Hold for ORCL, implying bullish potential with projected…

  • NVIDIA Rolling Volatility: GARCH & XGBoost

    NVIDIA Rolling Volatility: GARCH & XGBoost

    This post examines the prediction of NVIDIA stock volatility using two models: the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and the Extreme Gradient Boosting (XGBoost). Both models are compared in terms of MSE and MAPE. The post discovers that the machine learning-based XGBoost model outperforms the GARCH model in NVDA volatility forecasting, showing the effectiveness of…

  • IQR-Based Log Price Volatility Ranking of Top 19 Blue Chips

    IQR-Based Log Price Volatility Ranking of Top 19 Blue Chips

    The focus is on risk assessment of top blue chips. We determine market regimes using standard deviation (STD) of log-domain stock prices.

  • Blue-Chip Stock Portfolios for Quant Traders

    Blue-Chip Stock Portfolios for Quant Traders

    This post delves into optimizing blue-chip stock portfolios using Python fintech libraries for private DIY self-traders. It includes steps for examining trading signals, comparing stock returns, performing analyses, and implementing forecast models. The content covers AAPL trading signals, risk vs. ROI analysis, a 4-stock portfolio, Monte-Carlo predictions, SPY return/volatility, and SPY Prophet forecast. The examples…

  • Unsupervised ML, K-Means Clustering & Customer Segmentation

    Unsupervised ML, K-Means Clustering & Customer Segmentation

    Table of Clickable Contents Motivation Methods Open-Source Datasets This file contains the basic information (ID, age, gender, income, and spending score) about the customers. Online retail is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion…

  • Risk-Aware Strategies for DCA Investors

    Risk-Aware Strategies for DCA Investors

    Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.

  • A Closer Look at the Azure Cloud Portfolio – 3. Azure DevOps Boards

    A Closer Look at the Azure Cloud Portfolio – 3. Azure DevOps Boards

    Azure Boards (AB), part of Azure DevOps suite, is a tool for managing software development work that allows planning, tracking, customization, and discussion. The post outlines how to start with AB, set up a project, create and manage work items, customize a project’s boards, and organize work into sprints. AB’s key advantages include its flexibility,…

  • Working with FRED API in Python: U.S. Recession Forecast & Beyond

    Working with FRED API in Python: U.S. Recession Forecast & Beyond

    The FRED API, or Federal Reserve Economic Data, provides over 267,000 economic time series from 80 sources, offering a wealth of data to promote economic education and research. It encompasses U.S. economic and financial data, including interest rates, monetary indicators, exchange rates, and regional economic data. Additionally, we analyzed correlations, trained currency exchange prediction models,…

  • Deep Reinforcement Learning (DRL) on $MO 8.07% DIV USA Stock Data 2022-23

    Deep Reinforcement Learning (DRL) on $MO 8.07% DIV USA Stock Data 2022-23

    This study applies the Deep Reinforcement Learning (DRL) algorithm to USA stocks with +4% DIV in 2022-23, focusing on Altria Group, Inc. The study addresses accurate stock price predictions and the challenges in traditional methods. Recent advances in DRL have shown improved accuracy in stock forecasting, making it suitable for turbulent markets and investment decision-making.

  • Portfolio Optimization of 20 Dividend Growth Stocks

    Portfolio Optimization of 20 Dividend Growth Stocks

    The post discusses implementing a stochastic optimization algorithm to create a balanced portfolio of 20 dividend growth stocks for maximum return within defined risk tolerance. By analyzing daily stock and benchmark data, the algorithm optimizes the portfolio to outperform the benchmark index and achieve desired risk-reward outcomes. The results facilitate spreading investment capital across diverse…

  • Donchian Channel Trading Systems

    Donchian Channel Trading Systems

    This article explores the application of algo trading using Python for Altria Group, Inc., a Dividend King diversifying beyond smoking. The historical data for Altria is used to test and contrast trading strategies based on the Donchian Channel indicator. The key is to compare the highest total return when using the Donchian Channel Breakout versus…