Category: Demand Forecasting
-
Retail Sales, Store Item Demand Time-Series Analysis/Forecasting: AutoEDA, FB Prophet, SARIMAX & Model Tuning

This study compares and evaluates various forecasting models to predict sales and demand for retail businesses. The focus is on Time Series Analysis (TSA) methods such as FB Prophet and SARIMAX. The final FB Prophet model yields MAE=4.252 and MAPE=0.168, while SARIMAX models’ best performing variant achieves MAE=6.285 and MAPE=0.213. The study emphasizes the importance…
-
Anomaly Detection using the Isolation Forest Algorithm

The post describes the application of Isolation Forest, an unsupervised anomaly detection algorithm, to identify abnormal patterns in financial and taxi ride data. The challenge is to accurately distinguish normal and abnormal data points for fraud detection, fault diagnosis, and outlier identification. Using real-world datasets of financial transactions and NYC taxi rides, the algorithm successfully…
-
Time Series Forecasting of Hourly U.S.A. Energy Consumption – PJM East Electricity Grid

Table of Contents PJME Data Let’s set the working directory YOURPATH and import the following key libraries Let’s read the input csv file in our working directory Let’s plot the time series Data Preparation Output: (113926, 1, 9) (113926,) (31439, 1, 9) (31439,) LSTM TSF Let’s plot the LSTM train/test val_loss history Output: MSE: 1811223.125…
-
Supervised ML Room Occupancy IoT

The article presents a study on applying machine learning (ML) to IoT sensor data for workspace occupancy detection. Comparing 14 popular scikit-learn classifiers, the ML systems built use the gathered IoT sensor data to predict room occupancy with high certainty. The results suggest temperature and light are the significant factors affecting occupancy detection. The study…
-
ML Prediction of High/Low Video Game Hits with Data Resampling and Model Tuning

The post outlines a ML-based approach to forecast video game sales, using several techniques to enhance training, accuracy, and prediction. The Kaggle’s VGChartz dataset, containing sales data and other game-specific information, was used to build and refine the model. Several ML techniques including RandomForestClassifier and Logistic Regression yielded top predictors, with the critic’s score deemed…
-
An Overview of Video Games in 2023: Trends, Technology, and Market Research

The gaming industry is rapidly growing, projected to reach a revenue of $365.6 billion in 2023. Major trends include Web3 gaming, AI integration, and a push for consolidation. Fashion brands collaborate for virtual sales, and advances in gaming technology, such as AR/VR and cloud-based gaming, promise an even more immersive experience for gamers.
-
Customer Reviews NLP Spacy Analysis and ML/AI Demand Forecasting of the Steam PC Video Game Service

Steam, a leading digital distribution platform for PC gaming, has seen over 6000 new games released in 2022, averaging over 34 games each day. This post aims to conduct comprehensive customer reviews NLP sentiment analysis and ML/AI demand forecasting using public-domain datasets. It covers EDA, NLP Spacy analysis, ML/AI pipeline, model validation, word clouds, and…
-
Unsupervised ML, K-Means Clustering & Customer Segmentation

Table of Clickable Contents Motivation Methods Open-Source Datasets This file contains the basic information (ID, age, gender, income, and spending score) about the customers. Online retail is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion…
-
Risk-Aware Strategies for DCA Investors

Dollar-Cost Averaging (DCA) is an investment approach that involves investing a fixed amount regularly, regardless of market price. It offers benefits such as risk reduction and market downturn resilience. It’s useful for beginners and can be combined with other strategies for a disciplined investment approach. References include Investopedia and Yahoo Finance.
-
Working with FRED API in Python: U.S. Recession Forecast & Beyond

The FRED API, or Federal Reserve Economic Data, provides over 267,000 economic time series from 80 sources, offering a wealth of data to promote economic education and research. It encompasses U.S. economic and financial data, including interest rates, monetary indicators, exchange rates, and regional economic data. Additionally, we analyzed correlations, trained currency exchange prediction models,…
-
Overview of AWS Tech Portfolio 2023

This summary focuses on the extensive capabilities of Amazon Web Services (AWS) by 2023, highlighting its 27% year-on-year growth and a net sales increase to $127.1 billion. AWS emerges as the top cloud service provider, offering over 200 services including compute, storage, databases, networking, AI, and machine learning. It is constantly expanding operations, having opened…
-
SARIMAX Crude Oil Prices Forecast – 2. Brent

This study focuses on validating the EIA energy forecast for the 2023 Brent crude oil spot price using SARIMAX time-series cross-validation. It includes prerequisites, data loading, ETS decomposition, ADF test, SARIMAX modeling, predictions, model evaluation, and summary. The predictions align with the EIA forecast, with discrepancies within predicted confidence intervals.
-
Cloud-Native Tech Autumn 2022 Fair

Let’s dive deeper into the cloud-native tech trends and features to follow in Q4 2022 and beyond. Contents: Markets Services Serverless Cybersecurity DevSecOps ML/AI/IoT Use-Cases Events Training Explore More Infographic
-
The MobiDev ML Approach to Demand Forecasting Demystified

This post outlines MobiDev’s machine learning framework for marketing-driven demand forecasting (DF), consisting of five steps. The process begins with an overview of input data and setting KPIs, followed by data preparation and exploratory analysis. DF models are then trained, tested, and cross-validated, concluding with their final deployment. The approach incorporates business-specific factors like product…


