Risk-Return Analysis and LSTM Price Predictions of 4 Major Tech Stocks in 2023

  • Many of the most valuable companies in the world are technology companies. These 4 companies are some of the most dominant tech stocks that investors should consider.
  • Recently, Amazon benefited from booming e-commerce sales as shoppers shied away from stores.
  • Insatiable demand for PCs, smartphones, and other gadgets boosted sales for Microsoft and Apple.
  • OpenAI’s ChatGPT took the world by storm in late 2022, and Microsoft is a major investor.
  • Alphabet’s revenue growth slowed dramatically in 2022, with revenue up just 6% year over year in the third quarter. Alphabet’s Google Cloud business is growing rapidly, but its core advertising business is running up against a worsening economy.

The open-source Python workflow breaks down our investigation into the following 4 steps: (1) invoke yfinance to import real-time stock information into a Pandas dataframe; (2) visualize different dataframe columns with Seaborn and Matplotlib; (3) compare stock risk/return using historical data; (4) predict stock prices in 2023 with the trained LSTM model.

Input Data

Let’s set the working directory YOURPATH

import os
os.chdir(‘YOURPATH’)
os. getcwd()

and define the following tech stocks

tech_list = [‘AAPL’, ‘GOOG’, ‘MSFT’, ‘AMZN’]

Let’s read 1Y stock data

end = datetime.now()
start = datetime(end.year – 1, end.month, end.day)

for stock in tech_list:
globals()[stock] = yf.download(stock, start, end)

company_list = [AAPL, GOOG, MSFT, AMZN]
company_name = [“APPLE”, “GOOGLE”, “MICROSOFT”, “AMAZON”]

for company, com_name in zip(company_list, company_name):
company[“company_name”] = com_name

df = pd.concat(company_list, axis=0)
df.tail(10)

[*********************100%***********************]  1 of 1 completed
[*********************100%***********************]  1 of 1 completed
[*********************100%***********************]  1 of 1 completed
[*********************100%***********************]  1 of 1 completed
Input tech stock data table

AAPL Summary Stats:
AAPL.describe()

AAPL Summary Stats

AAPL General info
AAPL.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 251 entries, 2022-03-11 to 2023-03-10
Data columns (total 7 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   Open          251 non-null    float64
 1   High          251 non-null    float64
 2   Low           251 non-null    float64
 3   Close         251 non-null    float64
 4   Adj Close     251 non-null    float64
 5   Volume        251 non-null    int64  
 6   company_name  251 non-null    object 
dtypes: float64(5), int64(1), object(1)
memory usage: 15.7+ KB

df.shape

(1004, 7)

Exploratory Data Analysis (EDA)

Let’s look at the closing price
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)

for i, company in enumerate(company_list, 1):
plt.subplot(2, 2, i)
company[‘Adj Close’].plot()
plt.ylabel(‘Adj Close’)
plt.xlabel(None)
plt.title(f”Closing Price of {tech_list[i – 1]}”)

plt.tight_layout()
plt.savefig(‘techclosingprice.png’)

Closing Price of 4 tech stocks 1Y

Now let’s plot the total volume of stock being traded each day
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)

for i, company in enumerate(company_list, 1):
plt.subplot(2, 2, i)
company[‘Volume’].plot()
plt.ylabel(‘Volume’)
plt.xlabel(None)
plt.title(f”Sales Volume for {tech_list[i – 1]}”)

plt.tight_layout()
plt.savefig(‘techvolume.png’)

Sales volume 1Y for 4 tech stocks

Moving Average (MA)

Let’s compute the Moving Average (MA) for 10, 20, and 50 days

ma_day = [10, 20, 50]

for ma in ma_day:
for company in company_list:
column_name = f”MA for {ma} days”
company[column_name] = company[‘Adj Close’].rolling(ma).mean()

fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_figheight(10)
fig.set_figwidth(15)

AAPL[[‘Adj Close’, ‘MA for 10 days’, ‘MA for 20 days’, ‘MA for 50 days’]].plot(ax=axes[0,0])
axes[0,0].set_title(‘APPLE’)

GOOG[[‘Adj Close’, ‘MA for 10 days’, ‘MA for 20 days’, ‘MA for 50 days’]].plot(ax=axes[0,1])
axes[0,1].set_title(‘GOOGLE’)

MSFT[[‘Adj Close’, ‘MA for 10 days’, ‘MA for 20 days’, ‘MA for 50 days’]].plot(ax=axes[1,0])
axes[1,0].set_title(‘MICROSOFT’)

AMZN[[‘Adj Close’, ‘MA for 10 days’, ‘MA for 20 days’, ‘MA for 50 days’]].plot(ax=axes[1,1])
axes[1,1].set_title(‘AMAZON’)

fig.tight_layout()
plt.savefig(‘techma102050.png’)

Tech stocks MA for 10, 20 and 50 days

Daily Returns

We’ll use pct_change to find the percentage of Daily Return
for company in company_list:
company[‘Daily Return’] = company[‘Adj Close’].pct_change()

Then we’ll plot the the percentage of Daily Return
fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_figheight(10)
fig.set_figwidth(15)

AAPL[‘Daily Return’].plot(ax=axes[0,0], legend=True, linestyle=’–‘, marker=’o’)
axes[0,0].set_title(‘APPLE’)

GOOG[‘Daily Return’].plot(ax=axes[0,1], legend=True, linestyle=’–‘, marker=’o’)
axes[0,1].set_title(‘GOOGLE’)

MSFT[‘Daily Return’].plot(ax=axes[1,0], legend=True, linestyle=’–‘, marker=’o’)
axes[1,0].set_title(‘MICROSOFT’)

AMZN[‘Daily Return’].plot(ax=axes[1,1], legend=True, linestyle=’–‘, marker=’o’)
axes[1,1].set_title(‘AMAZON’)

fig.tight_layout()

plt.savefig(‘techdailyreturnpercentage.png’)

Tech stocks: the percentage of Daily Return

Let’s plot histograms of Daily Returns

plt.figure(figsize=(12, 9))

for i, company in enumerate(company_list, 1):
plt.subplot(2, 2, i)
company[‘Daily Return’].hist(bins=50)
plt.xlabel(‘Daily Return’)
plt.ylabel(‘Counts’)
plt.title(f'{company_name[i – 1]}’)

plt.tight_layout()
plt.savefig(‘techdailyreturnhistograms.png’)

Tech stocks: histograms of Daily Returns

Correlations

Let’ combine closing prices for 4 tech stocks into a single DataFrame

closing_df = pdr.get_data_yahoo(tech_list, start=start, end=end)[‘Adj Close’]

and compute their daily returns
tech_rets = closing_df.pct_change()
tech_rets.head()

[*********************100%***********************]  4 of 4 completed
Tech stocks daily returns (%)

We’ll use joinplot to compare the daily returns of Google and Microsoft
sns.jointplot(x=’GOOG’, y=’MSFT’, data=tech_rets, kind=’scatter’)
plt.savefig(‘techdailyreturngoogmsft.png’)

Cross-plot of daily returns (%): GOOG vs MSFT

Similarly, we can compare the daily returns of AMZN and Microsoft
sns.jointplot(x=’AMZN’, y=’MSFT’, data=tech_rets, kind=’scatter’)
plt.savefig(‘techdailyreturnamznmsft.png’)

Cross-plot of daily returns (%): AMZN vs MSFT

Similarly, we can compare the daily returns of AMZN and AAPL

sns.jointplot(x=’AMZN’, y=’AAPL’, data=tech_rets, kind=’scatter’)
plt.savefig(‘techdailyreturnamznappl.png’)

Cross-plot of daily returns (%): AAPL vs AMZN

Let’s use pairplot as follows

sns.pairplot(tech_rets, kind=’reg’)
plt.savefig(‘techdailyreturnpairplot.png’)

Pairplot of 4 major tech stocks daily returns (%)

Let’s combine PairGrid, map_upper, map_lower, and map_diag into a single plot

return_fig = sns.PairGrid(tech_rets.dropna())

return_fig.map_upper(plt.scatter, color=’purple’)

return_fig.map_lower(sns.kdeplot, cmap=’cool_d’)

return_fig.map_diag(plt.hist, bins=30)
plt.savefig(‘techmappairgrid.png’)

Tech stocks daily returns (%) map pair grid

Similarly, we can plot the closing price instead of daily returns

returns_fig = sns.PairGrid(closing_df)

returns_fig.map_upper(plt.scatter,color=’purple’)

returns_fig.map_lower(sns.kdeplot,cmap=’cool_d’)

returns_fig.map_diag(plt.hist,bins=30)
plt.savefig(‘techmappairgridclosingprice.png’)

Tech stocks closing price map pair grid

Let’s plot the correlation matrix of stock returns vs closing price

plt.figure(figsize=(12, 10))

plt.subplot(2, 2, 1)
sns.heatmap(tech_rets.corr(), annot=True, cmap=’summer’)
plt.title(‘Correlation of stock return’)

plt.subplot(2, 2, 2)
sns.heatmap(closing_df.corr(), annot=True, cmap=’summer’)
plt.title(‘Correlation of stock closing price’)
plt.savefig(‘techcorrmatrixreturnclosingprice.png’)

Correlation matrix: stock return vs closing price

Risk-Return Analysis

How much value do we put at risk by investing in a particular stock? Let’s look at the Risk-Return map
rets = tech_rets.dropna()

area = np.pi * 20

plt.figure(figsize=(10, 8))
plt.scatter(rets.mean(), rets.std(), s=area)
plt.xlabel(‘Expected return’)
plt.ylabel(‘Risk’)

for label, x, y in zip(rets.columns, rets.mean(), rets.std()):
plt.annotate(label, xy=(x, y), xytext=(50, 50), textcoords=’offset points’, ha=’right’, va=’bottom’,
arrowprops=dict(arrowstyle=’-‘, color=’blue’, connectionstyle=’arc3,rad=-0.3′))
plt.savefig(‘techstockriskreturnmap.png’)

Risk vs expected return of 4 major stocks

AAPL Price LSTM Model

Predicting the closing price stock price of APPLE inc.

Let’s get the stock quote
df = pdr.get_data_yahoo(‘AAPL’, start=’2022-01-03′, end=datetime.now())

[*********************100%***********************]  1 of 1 completed
AAPL input table

Let’s plot the AAPL close price USD 1Y history

plt.figure(figsize=(16,6))
plt.title(‘Close Price History’)
plt.plot(df[‘Close’])
plt.xlabel(‘Date’, fontsize=18)
plt.ylabel(‘Close Price USD ($)’, fontsize=18)
plt.savefig(‘aaplclosignprice.png’)

AAPL close price USD 1Y history

Creating a new dataframe with only the ‘Close’ column
data = df.filter([‘Close’])

Convert the dataframe to a numpy array
dataset = data.values

Get the number of rows to train the model on
training_data_len = int(np.ceil( len(dataset) * .95 ))

training_data_len

284

Let’s scale the data
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)

Create the scaled training data set
train_data = scaled_data[0:int(training_data_len), :]

Split the data into x_train and y_train data sets
x_train = []
y_train = []

for i in range(60, len(train_data)):
x_train.append(train_data[i-60:i, 0])
y_train.append(train_data[i, 0])
if i<= 61:
print(x_train)
print(y_train)
print()

Convert the x_train and y_train to numpy arrays
x_train, y_train = np.array(x_train), np.array(y_train)

Reshape the data
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

Let’s build, compile and train the LSTM model

from keras.models import Sequential
from keras.layers import Dense, LSTM

model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))

model.compile(optimizer=’adam’, loss=’mean_squared_error’)

model.fit(x_train, y_train, batch_size=1, epochs=20)

Epoch 1/20
224/224 [==============================] - 5s 13ms/step - loss: 0.0174
Epoch 2/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0078
Epoch 3/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0067
Epoch 4/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0055
Epoch 5/20
224/224 [==============================] - 3s 12ms/step - loss: 0.0063
Epoch 6/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0049
Epoch 7/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0048
Epoch 8/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0045
Epoch 9/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0043
Epoch 10/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0044
Epoch 11/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0043
Epoch 12/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0050
Epoch 13/20
224/224 [==============================] - 3s 13ms/step - loss: 0.0045
Epoch 14/20
224/224 [==============================] - 4s 17ms/step - loss: 0.0051
Epoch 15/20
224/224 [==============================] - 3s 15ms/step - loss: 0.0047
Epoch 16/20
224/224 [==============================] - 3s 14ms/step - loss: 0.0043
Epoch 17/20
224/224 [==============================] - 3s 14ms/step - loss: 0.0040
Epoch 18/20
224/224 [==============================] - 3s 14ms/step - loss: 0.0040
Epoch 19/20
224/224 [==============================] - 3s 15ms/step - loss: 0.0048
Epoch 20/20
224/224 [==============================] - 4s 16ms/step - loss: 0.0043

Out[84]:

<keras.callbacks.History at 0x1d91f3eadc0>

history = model.history.history
print(history)

{'loss': [0.017397716641426086, 0.007797327823936939, 0.0067240772768855095, 0.005469697993248701, 0.0062720817513763905, 0.004899029619991779, 0.0048156785778701305, 0.004509173333644867, 0.00425869133323431, 0.004385276231914759, 0.004279236309230328, 0.004953560419380665, 0.004468429367989302, 0.00513608381152153, 0.004718478303402662, 0.004269555676728487, 0.00395335303619504, 0.004049328621476889, 0.004776121117174625, 0.004271872341632843]}

Let’s plot the LSTM loss vs epoch<20

import math
from matplotlib import pyplot as plt
epoch = np.arange(len(history[‘loss’])) + 1
new_list = range(math.floor(min(epoch)), math.ceil(max(epoch))+1)
plt.xticks(new_list)
histloss=history[‘loss’]
plt.plot(epoch,histloss)
plt.xlabel(“Epoch”)
plt.ylabel(“Loss”)

plt.title(“LSTM History Loss”)
plt.savefig(‘lstmhistoryloss.png’)

LSTM history loss curve

Let’s create the testing data set

test_data = scaled_data[training_data_len – 60: , :]

x_test = []
y_test = dataset[training_data_len:, :]
for i in range(60, len(test_data)):
x_test.append(test_data[i-60:i, 0])

Convert the data to a numpy array
x_test = np.array(x_test)

Reshape the data
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))

Get the predicted price values
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)

Get the root mean squared error (RMSE)
rmse = np.sqrt(np.mean(((predictions – y_test) ** 2)))
rmse

1/1 [==============================] - 0s 427ms/step

Out[92]:

2.7391927142048043

Plot the data:
train = data[:training_data_len]
valid = data[training_data_len:]
valid[‘Predictions’] = predictions

plt.figure(figsize=(16,6))
plt.title(‘Model’)
plt.xlabel(‘Date’, fontsize=18)
plt.ylabel(‘Close Price USD ($)’, fontsize=18)
plt.plot(train[‘Close’])
plt.plot(valid[[‘Close’, ‘Predictions’]])
plt.legend([‘Train’, ‘Val’, ‘Predictions’], loc=’lower right’)
plt.savefig(‘aapllstmprediction.png’)

AAPL close price USD: train, validation, and prediction data.

Show the valid and predicted prices
valid

AAPL close price vs LSTM predictions

Summary

  • In this study, we performed EDA, correlations between different stocks, risk-return value assessment and LSTM model predictions of tech stock prices and their daily returns.
  • We believe that this research helps in understanding the underlying patterns and relationships in the stock data. Here we examined the patterns in the stock price of AAPL, AMZN, MSFT, and GOOG.
  • We have shown that major tech stocks are positively correlated in that they move up or down in tandem. Stock correlation is important because it can help show an investor that they may not be as diversified as they think.
  • We have focused on making short-term predictions to get a probabilistic estimate of what the tech stock “could” look like soon. With enough historical data and useful features, LSTM models might predict short-term fluctuations in the market for an average, uneventful market day.

Explore More


One-Time
Monthly
Yearly

Make a one-time donation

Make a monthly donation

Make a yearly donation

Choose an amount

$5.00
$15.00
$100.00
$5.00
$15.00
$100.00
$5.00
$15.00
$100.00

Or enter a custom amount

$

Your contribution is appreciated.

Your contribution is appreciated.

Your contribution is appreciated.

DonateDonate monthlyDonate yearly
Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: