Tag: LSTM

  • Sales Forecasting: tslearn, Random Walk, Holt-Winters, SARIMAX, GARCH, Prophet, and LSTM

    Sales Forecasting: tslearn, Random Walk, Holt-Winters, SARIMAX, GARCH, Prophet, and LSTM

    The data science project involves evaluating various sales forecasting algorithms in Python using a Kaggle time-series dataset. The forecasting algorithms include tslearn, Random Walk, Holt-Winters, SARIMA, GARCH, Prophet, LSTM and Di Pietro’s Model. The goal is to predict next month’s sales for a list of shops and products, which slightly changes every month. The best…

  • Prediction of NASA Turbofan Jet Engine RUL: OLS, SciKit-Learn & LSTM

    Prediction of NASA Turbofan Jet Engine RUL: OLS, SciKit-Learn & LSTM

    We predict the Remaining Useful Life (RUL) of NASA turbofan jet engines by comparing the statsmodels OLS, ML SciKit-Learn regression vs LSTM Keras in Python. The input dataset is the Kaggle version of the public dataset for asset degradation modeling from NASA. It includes Run-to-Failure simulated data from turbo fan jet engines.

  • Dividend-NG-BTC Diversify Big Tech

    Dividend-NG-BTC Diversify Big Tech

    SEO Title: Can Dividends, Natural Gas and Crypto Diversify Big Techs? Ultimately, we need to answer the following fundamental question: Can Dividend Kings, NGUSD and BTC-USD Diversify Growth Tech assets? Dividends are very popular among investors, especially those who want a steady stream of income from their investments. Some companies choose to share their profits…

  • Returns-Volatility Domain K-Means Clustering and LSTM Anomaly Detection of S&P 500 Stocks

    Returns-Volatility Domain K-Means Clustering and LSTM Anomaly Detection of S&P 500 Stocks

    This study aims to implement and evaluate the K-means algorithm for ranking/clustering S&P 500 stocks based on average annualized return and volatility. The second goal is to detect anomalies in the best performing S&P 500 stocks using the Isolation Forest algorithm. Additionally, anomalies in the S&P 500 historical stock price time series data will be…

  • JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    The post discusses predicting JPM stock prices for 2022-2023 using several predictive models like ARIMA, FFT, LSTM, and Technical Trading Indicators (TTIs) such as EMA, RSI, OBV, and MCAD. The ARIMA model used historical data, while the partial spectral decompositions of stock prices served as features for the FFT model. TTIs were calculated to validate…

  • LSTM Price Predictions of 4 Tech Stocks

    LSTM Price Predictions of 4 Tech Stocks

    The given content explains the process of using Exploratory Data Analysis (EDA) and Long Short-Term Memory (LSTM) Sequential model for comparing the risk/return of four major tech stocks: Apple, Google, Microsoft, and Amazon, considering the tech scenario in 2023. The analysis involves examining stock price patterns, their correlations, risk-return assessment, and predicting stock prices using…

  • AI-Based ECG Recognition – EOY ’22 Status

    AI-Based ECG Recognition – EOY ’22 Status

    Featured Photo by cottonbro studio on pexels. Electrocardiography (ECG) is the method most often used to diagnose cardiovascular diseases. The recent study demonstrates that an AI is capable of automatically diagnosing the abnormalities indicated by an ECG. In this post we will review and illustrate how AI applies to ECG analysis to outperform traditional ECG analysis.…