Tag: ARIMA

  • Retail Sales, Store Item Demand Time-Series Analysis/Forecasting: AutoEDA, FB Prophet, SARIMAX & Model Tuning

    Retail Sales, Store Item Demand Time-Series Analysis/Forecasting: AutoEDA, FB Prophet, SARIMAX & Model Tuning

    This study compares and evaluates various forecasting models to predict sales and demand for retail businesses. The focus is on Time Series Analysis (TSA) methods such as FB Prophet and SARIMAX. The final FB Prophet model yields MAE=4.252 and MAPE=0.168, while SARIMAX models’ best performing variant achieves MAE=6.285 and MAPE=0.213. The study emphasizes the importance…

  • A Balanced Mix-and-Match Time Series Forecasting: ThymeBoost, Prophet, and AutoARIMA

    A Balanced Mix-and-Match Time Series Forecasting: ThymeBoost, Prophet, and AutoARIMA

    The post evaluates the performance of popular Time Series Forecasting (TSF) methods, namely AutoARIMA, Facebook Prophet, and ThymeBoost on four real-world time series datasets: Air Passengers, U.S. Wholesale Price Index (WPI), BTC-USD price, and Peyton Manning. Each TSF model uses historical data to identify trends and make future predictions. Studies indicate that ThymeBoost, which combines…

  • Joint Analysis of Bitcoin, Gold and Crude Oil Prices

    Joint Analysis of Bitcoin, Gold and Crude Oil Prices

    The content discusses a comprehensive analysis on a joint time-series analysis of Bitcoin, Gold and Crude Oil prices from 2021 to 2023. It explores data processing, exploratory data analysis before running a range of statistical tests, ARIMA models fitting, and finally, using the Markowitz portfolio optimization method. It then presents a detailed analysis, including data…

  • JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    JPM Breakouts: Auto ARIMA, FFT, LSTM & Stock Indicators

    The post discusses predicting JPM stock prices for 2022-2023 using several predictive models like ARIMA, FFT, LSTM, and Technical Trading Indicators (TTIs) such as EMA, RSI, OBV, and MCAD. The ARIMA model used historical data, while the partial spectral decompositions of stock prices served as features for the FFT model. TTIs were calculated to validate…