Category: Unsupervised Machine Learning
-
Time Series Data Imputation, Interpolation & Anomaly Detection

The post compares popular time series data imputation, interpolation, and anomaly detection methods. It explores the challenges of missing data and the impact on processing, analyzing, and model accuracy. The study performs data-centric experiments to benchmark optimal methods and highlights the importance of imputation for time series forecasting. It provides practical strategies and techniques for…
-
Malware Detection & Interpretation – PCA, T-SNE & ML

This post discusses the application of PCA, T-SNE, and supervised ML algorithms for malware detection using a benchmark dataset. Techniques such as Logistic Regression, SVC, KNN, and XGBoost are implemented, achieving high performance metrics. Results show potential for improving malware detection using ML while reducing false positives and enhancing cyber defense.
-
Sales Forecasting: tslearn, Random Walk, Holt-Winters, SARIMAX, GARCH, Prophet, and LSTM

The data science project involves evaluating various sales forecasting algorithms in Python using a Kaggle time-series dataset. The forecasting algorithms include tslearn, Random Walk, Holt-Winters, SARIMA, GARCH, Prophet, LSTM and Di Pietro’s Model. The goal is to predict next month’s sales for a list of shops and products, which slightly changes every month. The best…
-
Weather Forecasting & Flood De-Risking using Machine Learning, Markov Chain & Geospatial Plotly EDA

Foto door Pok Rie Scope: Business Value: Table of Contents U.S.A. Weather Forecast Australian Rainfall Prediction Kerala Flood Prediction Squares are categorical associations (uncertainty coefficient & correlation ratio) from 0 to 1. The uncertainty coefficient is asymmetrical, (i.e. ROW LABEL values indicate how much they PROVIDE INFORMATION to each LABEL at the TOP). • Circles are the symmetrical numerical…
-
Anomaly Detection using the Isolation Forest Algorithm

The post describes the application of Isolation Forest, an unsupervised anomaly detection algorithm, to identify abnormal patterns in financial and taxi ride data. The challenge is to accurately distinguish normal and abnormal data points for fraud detection, fault diagnosis, and outlier identification. Using real-world datasets of financial transactions and NYC taxi rides, the algorithm successfully…
-
Real-Time Anomaly Detection of NAB Ambient Temperature Readings using the TensorFlow/Keras Autoencoder

The content covers a detailed guide on implementing anomaly detection in time series data using autoencoders. The tutorial utilizes Python and real-world temperature dataset from Numenta Anomaly Benchmark (NAB). Following the Python workflow, the algorithm imports required libraries, performs anomaly detection, and visualizes anomalies. A trained autoencoder model identifies anomalies, with Precision, Recall, and F1…
-
Improved Multiple-Model ML/DL Credit Card Fraud Detection: F1=88% & ROC=91%

In 2023, the global card industry is projected to suffer $36.13 billion in fraud losses. This has necessitated a priority focus on enhancing credit card fraud detection by banks and financial organizations. AI-based techniques are making fraud detection easier and more accurate, with models able to recognize unusual transactions and fraud. The post discusses a…
-
Unsupervised ML, K-Means Clustering & Customer Segmentation

Table of Clickable Contents Motivation Methods Open-Source Datasets This file contains the basic information (ID, age, gender, income, and spending score) about the customers. Online retail is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion…
-
Effective 2D Image Compression with K-means Clustering

The post explores the application of the K-means clustering algorithm, a popular unsupervised Machine Learning algorithm, for image compression. By segmenting 2D images into different clusters, the algorithm effectively reduces storage space without compromising on image quality or resolution. It also demonstrates the application of this approach through a case study, where optimal results were…

